SIEM for Beginners

We tend to use a lot of stand-alone systems for the analysis of not-so-easy-to-understand processes, but having a thorough log analysis and the big picture of what the systems do altogether is of great importance.

Let’s talk about Security Information & Event Management or SIEM for short. Such systems are used to collect and analyze information from a maximum number of sources of information – such as DLP system, IPS, routers, firewalls, user workstations, servers, and so on. Practical examples of threats that can only be identified correctly by SIEM:

  • APT attacks – relevant for companies holding valuable information. SIEM is perhaps the only way to detect the beginning of such an attack (with research infrastructure, attackers will generate traffic at different ends that allows you to see this activity by the security event correlation systems SIEM);
  • Detection of various anomalies in the network and on the individual nodes, the analysis of which is unattainable for other systems
  • Response to emergency situations, rapid changes in user behavior

The principle of “supply and forget“ is not applicable. Absolute protection does not exist, and the most unlikely risks can backfire and stop the business and cause huge financial losses. Any software and hardware may not work or be configured incorrectly and let the threat through.


  • Regulatory mandates require log management to maintain an audit trail of activity. SIEM’s provide a mechanism to rapidly and easily deploy a log collection infrastructure. Alerting and correlation capabilities also satisfy routine log data review requirements. SIEM reporting capabilities provide audit support as well;
  • A SIEM can pull data from disparate systems into a single pane of glass, allowing for efficient cross-team collaboration in extremely large enterprises;
  • By correlating process activity and network connections from host machines a SIEM can detect attacks, without ever having to inspect packets or payloads;
  • SIEM’s store and protect historical logs, and provide tools to quickly navigate and correlate data, thus allowing for rapid, thorough, and court-admissible forensics investigations.


  • Analysis of events and creation of alerts at any network traffic anomalies, unexpected user actions, unidentified devices, etc.;
    Creation of reports, including ones customized specifically for your needs.
  • For example, a daily report on incidents, a weekly report of top 10 violators, a report on the performance of devices, etc. Reports are configured flexibly according to their recipients;
  • Monitoring events from devices / servers / mission-critical systems, the establishment of appropriate notifications;
  • Logging of all events in the event gathering evidence, analyzing attack vectors, etc.




The SIEM implementation should leverage a phased approach, with systematic follow-through of the required stages for solution deployment. The typical SIEM implementation phases are:


А detailed assessment of the company’s environment must be performed with the goal to inventory the existing architecture and identify basic SIEM requirements – to understand the current enterprise security architecture and its critical components, the current tools and procedures used to determine potential risk and the procedures used to confirm regulatory compliance. Identifying the business objectives to be met by the development and implementation of a SIEM, as well as capture a clear network with an inventory of all devices in order to ensure solution comprehensiveness.


А detailed technical SIEM deployment design is to be created, based on the gathered requirements. Converting business requirements to conceptual scenarios, as well as creating technical use cases, logical and physical SIEM architecture designs, and SIEM integration project plan.


System characteristics require the provision of real-time, centralized monitoring and correlation system over the entire network security infrastructure, as well as notification of and response to harmful security events. Sharing information security event data with all relevant business units and generating security even data for forensic purposes.

This phase involves the tasks of configuring and installing the development environment, implementing technical use cases and the interface component, testing system configuration, documenting system configuration, rolling-out to production, and training & knowledge transferring.


As with most systems, the SIEM one also needs looking after. Ensuring support for the solution, placing an effective 24/7 solution monitoring, and preparing for a change of management, always with an eye of evolving threats, are all a must.


This is a question that can not be answered in advance. The integrator typically examines client infrastructure, their needs, figuring out what is the client’s budget.

After that the vendors make offers and the integrator proposes to the customer the one most suitable. This is needed because there is a lack of compatibility between different vendors.

Sometimes, it is believed that if you have a SIEM, there is no need to install DLP, IDS, vulnerability scanners, etc. In fact, this is not the case. SIEM can track any anomalies in the network stream, but it will not be able to make the normal analysis. SIEM, strictly speaking, is useless without other security systems. The main advantage of SIEM – collection, storage, and analysis of logs – will be reduced down to zero without the sources of these logs.